playground:playground

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
playground:playground [2021/09/30 16:34]
jojo1973
playground:playground [2021/10/01 09:08]
jojo1973 removed
Line 49: Line 49:
 where $θ_{r}\,$, $θ_{°}$ and $θ_{g}$ are the quantities entered by the user and $θ$ is what is actually fed to the trigonometric functions. where $θ_{r}\,$, $θ_{°}$ and $θ_{g}$ are the quantities entered by the user and $θ$ is what is actually fed to the trigonometric functions.
  
-From this, two important consequences derive: the first one is that the antiderivative changes according to the angular mode. Let's consider e.g. the function $ \sin{θ} $ and apply the transformations above:+From this, two important consequences derive:
  
-  * in ''[[manual:chapter6:flags:cmd_rad|RAD]]'' mode $ \sin{θ_r}\,d{θ_r} $ becomes $ \sin{θ}\,d{θ} $ whose antiderivative is $ -\cos{θ_r}\, $; +  - the antiderivative changes according to the angular mode. Let's consider e.g. the function $ f(θ)=\sin{θ} $ and apply the transformations above:\\ \\ 
-  * in ''[[manual:chapter6:flags:cmd_deg|DEG]]'' mode $ \sin{\left(\frac{\pi}{180}{θ_°}\right)}\,d{θ_°} becomes \sin\left(\frac{\pi}{180}{θ}\right)\frac{180}{\pi}\,d{θ}\, $ whose antiderivative is $ -\frac{180}{\pi}\cos\left(\frac{\pi}{180}{θ}\right)\, $; +    * in ''[[manual:chapter6:flags:cmd_rad|RAD]]'' mode $ f(θ_r) $ is equivalent to $ f(θ) $ which differentiates to $ f(θ_r)\,dθ_r=\sin{θ}\,d{θ} $ and whose antiderivative is $ F(θ)=-\cos{θ}\, $; 
-  * in ''[[manual:chapter6:flags:cmd_grad|GRAD]]'' mode $ \sin{\left(\frac{\pi}{200}{θ_g}\right)}\,d{θ_g} becomes \sin\left(\frac{\pi}{200}{θ}\right)\frac{200}{\pi}\,d{θ}\, $ whose antiderivative is $ -\frac{200}{\pi}\cos\left(\frac{\pi}{200}{θ}\right)\, $. +    * in ''[[manual:chapter6:flags:cmd_deg|DEG]]'' mode $ f(θ_°) $ is actually $ f\left(\frac{\pi}{180}θ_°\right) $ which differentiates to f\left(\frac{\pi}{180}θ\right)\,dθ_°=\frac{180}{\pi}\sin{θ}\,d{θ} $ and whose antiderivative is $ F(θ)=-\frac{180}{\pi}\cos{θ}\, $; 
- +    * in ''[[manual:chapter6:flags:cmd_grad|GRAD]]'' mode $ f(θ_g) $ is actually $ f\left(\frac{\pi}{200}θ_g\right) $ which differentiates to f\left(\frac{\pi}{200}θ_g\right)\,dθ_g=\frac{200}{\pi}\sin{θ}\,d{θ} $ and whose antiderivative is $ F(θ)=-\frac{200}{\pi}\cos{θ}\, $;\\ \\ 
-The second consequence is that no variable substitution is applied to the integration limitsof course the user can alter these limits manually, but it'not always possible or desirable+  no inverse transformation is applied to the resulting outputthis is mathematically correct, but can be disconcerting if one is not immediately aware of the implicit variable substitution
- +\\ 
-In conclusion, unless the user knows exactly what he/she is doing **it's advisable to perform numeric integration of trigonometric expressions in ''[[manual:chapter6:flags:cmd_rad|RAD]]'' mode**.+In conclusion, unless the user knows exactly what he/she is doing it's advisable **to perform numeric integration of trigonometric expressions in ''[[manual:chapter6:flags:cmd_rad|RAD]]'' mode**.
  
 ---- ----
Line 63: Line 63:
 ==== Example 1: Bound function on closed interval ==== ==== Example 1: Bound function on closed interval ====
  
-|  pic  |  $$ \int^{2}_{0} x^{10}e^{\left(4x^{3}-3x^{4}\right)} \,dx $$  | <code>16 SETPREC+|  pic  |  $$ \int^{2}_{0} x^{10}e^{\left(4x^{3}-3x^{4}\right)} \,dx $$  | **Input:**\\ <code>16 SETPREC
 'F(X)=X^10*EXP(4*X^3-3*X^4)' 'F(X)=X^10*EXP(4*X^3-3*X^4)'
 0 0
  • playground/playground.txt
  • Last modified: 2021/10/11 13:50
  • by jojo1973