Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
manual:chapter3:complex [2017/06/17 13:06]
smartin [Entering complex numbers]
manual:chapter3:complex [2019/10/07 16:08]
jojo1973 [Entering complex numbers] C→R actually removes the complex from the stack
Line 5: Line 5:
 ==== Entering complex numbers ==== ==== Entering complex numbers ====
  
-A complex number can be represented mathematically in rectangular form as $z = x + iy$ or in polar form as $z = re^{i\theta}$.  ​To enter a complex number ​simply enclose the real and imaginary parts in parenthesis. ​ For example, the complex number $5+3i$ would be entered (in rectangular form) as ''​(5,​ 3)''​ or ''​(5 3)''​ or in polar form as ''​(5.83,​ ∡30.96)''​((The keyboard shortcut for the angle symbol (∡) is **AL-RS-6**.)). ​ Alternatively,​ a complex number can be created from two numbers ​on the stack using the command ''​R→C'':​+A complex number can be represented mathematically in rectangular form as $z = x + iy$ or in polar form as $z = re^{i\theta}$.  ​complex number ​is entered as a pair of numbers comma or space separated ​and enclosed ​in parenthesis. ​ For example, the complex number $5+3i$ would be entered (in rectangular form) as ''​(5,​ 3)''​ or ''​(5 3)''​ or in polar form ($r,​\theta$) ​as ''​(5.83,​ ∡30.96)''​((The keyboard shortcut for the angle symbol (∡) is **AL-RS-6**.  In this case the calculator is set to ''​DEG''​ mode, angles can be expressed in radians by setting ''​RAD''​.)).  Alternatively,​ a complex number can be created from two numbers using the command ''​R→C'':​
  
 ''​5 3 R→C''​ ''​5 3 R→C''​
  
-The inverse command to break down a complex number is ''​C→R'' ​((Note, however, that this command does not remove the complex number from the stack, as occurs in the 50g stock ROM.)).  The real or imaginary parts of a complex number can be returned using the commands ''​RE''​ or ''​IM'',​ respectively. ​ Converting ​between ​rectangular ​and polar representation can be done using the commands ​''​→POLAR'' ​and ''​→RECT''​, respectively.  It is also possible to enter complex numbers in different bases, although commands and operations between complex numbers will always return the result in base 10.  For example, to enter the above example in base 2:+The inverse command to break down a complex number is ''​C→R''​. ​ The real or imaginary parts of a complex number can be returned using the commands ''​RE''​ or ''​IM'',​ respectively. ​ Converting ​from rectangular ​to polar representation can be done using the command ​''​→POLAR''​.  The inverse conversion, polar to rectangular,​ is done using the command ​''​→RECT''​. ​ It is also possible to enter complex numbers in different bases, although commands and operations between complex numbers will always return the result in base 10.  For example, to enter the above example in base 2:
  
 ''#​101b #11b R→C''​ ''#​101b #11b R→C''​
  
-leads to ''​(#​101b,#​11b)''​ on the stack, but taking the complex conjugate (''​CONJ''​) ​would result ​in ''​(5,​-3)''​.+leads to ''​(#​101b,#​11b)''​ on the stack, but taking the complex conjugate (''​CONJ''​) ​results ​in ''​(5,​-3)''​.
  
-System flag -103 formally sets the calculator mode to complex: ''​-103 SF''​.+System flag -103 formally sets the calculator mode to complex: ''​-103 SF''​. ​ This is important to ensure all input to functions return complex results. ​ For example, without setting flag -103, taking the square root of -1 results an an error (Argument outside domain). ​ Whereas in complex mode, the square root of -1 returns the correct result ''​(0,​1)''​.
  
  
 ---- ----
 ==== Complex number arithmetic ==== ==== Complex number arithmetic ====
-Many of the functions that operate on regular (non-complex) numbers also operate on complex numbers. ​ These functions include the basic arithmetic functions ($+,​-,​\times,​\div$) along with many of the trigonometry ($\sin, \cos, \tan$) and power functions ($x^2, e^x, 10^x$) ​and their inverses.+Many of the functions that operate on regular (non-complex) numbers also operate on complex numbers. ​ These functions include the basic arithmetic functions ($+,​-,​\times,​\div$) along with many of the trigonometry ($\sin, \operatorname{asin}, \cos, \operatorname{acos}, \tan, \operatorname{atan}$) and power functions ($x^2, \sqrt x , e^x, \ln x, 10^x, \log x$).
 ---- ----
 ==== Commands for complex numbers ==== ==== Commands for complex numbers ====
 +The following table summarizes commands applicable to complex numbers, $z=x+iy=re^{i\theta}$.
  
-----+| Command | Purpose | Example ($\theta$ in degrees) | 
 +| ''​C→R''​ | Break down complex number to two reals | ''​(5,​3) C→R''​ yields ''​(5,​3)''​ ''​5''​ ''​3''​| 
 +| ''​R→C''​ | Combine two numbers to a complex | ''​5 3 R→C''​ yields ''​(5,​3)''​| 
 +| ''​IM''​ | Imaginary part of a complex number | ''​(5,​3) IM''​ yields ''​3''​ | 
 +| ''​RE''​ | Real part of a complex number | ''​(5,​3) RE''​ yields ''​5''​ | 
 +| ''​→POLAR''​ | Convert from rectangular to polar | ''​(5,​3) →POLAR''​ yields ''​(5.831.,​∡30.964.°)''​| 
 +| ''​→RECT''​ | Convert from polar to rectangular | ''​(5.831.,​∡30.964.°) →RECT''​ yields ''​(5.,​3.)''​| 
 +| ''​ABS''​ | $|z|=r=\sqrt{x^2+y^2}$ | ''​(5,​3) ABS''​ yields ''​5.831.''​| 
 +| ''​ARG''​ | $\theta = \operatorname{atan}(y/​x)$ | ''​(5,​3) ARG''​ yields ''​∡30.964.°''​| 
 +| ''​SIGN''​ | $z/|z|$ | ''​(5,​3) SIGN''​ yields ''​(0.857.,​0.514.)''​| 
 +| ''​NEG''​ | $-z=-x-iy$ | ''​(5,​3) NEG''​ yields ''​(-5, -3)''​| 
 +| ''​CONJ''​ | $x-iy$ | ''​(5,​3) CONJ''​ yields ''​(5,​-3)''​|
  
 +----
  • manual/chapter3/complex.txt
  • Last modified: 2019/10/07 16:09
  • by jojo1973